

<u>National Policy Workshop Webinar Series</u> <u>On</u> <u>Countermeasures for Riverine and Marine Plastic Litter in India</u> <u>12-22 May 2020</u>

Session 6: Scenarios to counter plastics litter by overcoming barriers and identifying enabling measures

STRATEGY AND FACILITATION TO ENCOURAGE CO PROCESSING OF PLASTIC WASTE IN CEMENT KILN

> By Dr B.N. Mohapatra

Director General

National Council for Cement and Building Materials

PLASTIC WASTE GENERATION IN INDIA

- Plastic Waste Generation: 9.4 MTPA (26,000 tonnes per day as per CPCB
 - **5.6 MTPA** (15600 tpd) i.e. 60 % is recycled
 - Remaining 3.8 MTPA (9400 tpd is uncollected, littered and ends up in landfills or oceans or clogs drains).
 - Littered plastic gets mixed up with other waste in form of MSW.
 Average plastic waste generation is around 6.92% of MSW.

PLASTIC WASTE MANAGEMENT RULES 2016

- Local bodies shall encourage the use of plastic waste for road construction as per Indian Road Congress guidelines or <u>energy recovery</u> or waste to oil etc.
- Responsible for development of infrastructure set up for waste segregation, collection, storage, processing and disposal
- Waste segregation is also waste generators responsibility
- The standards and pollution control norms specified by the concerned prescribed authority for these technologies shall be complied with.

BEST OPTION FOR DISPOSAL OF PLASTICS CO-PROCESSING IN CEMENT PLANT

- High flame Temperature
- Long residence time
- Alkaline environment
- Oxidizing atmosphere
- Complete scrubbing of exhaust gases
- Inclusion of ash and residual metals within the clinker structure.
- Kiln lines equipped with ESP / Bag filters.
- Intense contact between solid and gas phases.
 - condensation of volatiles
 - absorbs SO₂
 - neutralizes acid gases.
- Destruction and Removal Efficiency of 99.9%.
- No waste is generated that requires subsequent disposal.

IDEAL CONDITIONS FOR CO-PROCESSING OF PLASTICS IN KILN SYSTEM

Characteristics	Values
Temperature in kiln	>1450 °C Burning Zone > 1800 °C flame temperature
Residence time in kiln	5 - 6 seconds
Temperature at calciner	> 850 °C material temperature > 1000 °C flame temperature
Residence time at calciner	4-6 seconds and > 800 °C

FEEDING OF PLASTIC WASTE MATERIAL FOR CO-PROCESSING

- The main burner at the rotary kiln outlet end
- The rotary kiln inlet end
- The pre-calciner
- The mid kiln (for long dry and wet kilns)

Unsegregated/ unprocessed waste send to landfills cannot be directly used by cement plants co-processing

FUTURISTIC SCENARIO FOR PLASTICS CO-PROCESSING IN INDIAN CEMENT INDUSTRY

Fuel consumed by cement industry *	40	million tonne coal/yr
Total heat requirement for Clinkerisation	180	Tera kcal/yr
Littered plastic	3.8	million tonne plastic/yr
Considering avg CV of 3000 kcal/kg	13.3	Tera kcal/yr
% Thermal Substitution Rate	~6	%

*Assumed Average CV of Fuel mix: 4500 kcal/kg

Anticipated 6% TSR by co-processing uncollected/littered plastic by Indian cement industry which is achievable. Some cement plants have achieved more than 15% TSR through AFs

CALORIFIC VALUE OF DIFFERENT TYPES OF PLASTICS

PARAMETER	CALORIFIC VALUE (kcal/kg)	
PET	5100	
HDPE	13000	
PVC	4500	Boovolabla
LDPE	11000	Recyclable
PP	12500	
PS	10700	

Cement Plants in India are getting plastic waste having a calorific value of 2500 – 3500 kcal/kg from the local bodies

PREREQUISITE FOR PLASTICS CO-PROCESSING IN CEMENT INDUSTRY

PARAMETER	PRE-REQUISITE	SOURCE	
Net Calorific Value	> 2500 kcal/kg	Co-processing guidelines CPCB	
Feed Size	< 20 mm for burner < 50 mm for calciner	Plastic Co-processing guidelines, MoHUA RDF guidelines	
Ash content	< 15 %		
Moisture content	< 20 %	MoHUA RDF	
Chlorine content	< 1 %	guidelines	
Sulphur content	< 1.5 %		

PROCESS MONITORING PARAMETERS FOR PLASTICS CO-PROCESSING

- Waste consumption
- Kiln feed
- Conventional fuel consumption
- Burning zone temperature
- Kiln inlet temperature, O₂, CO, NOx
- Preheater exit temperature,O₂,CO
- Shell radiation temperature in burning zone
- Clinker temperature in cooler exit
- Kiln speed, torque
- Preheater fan speed
- Specific thermal and electrical energy consumption

PARAMETERS NEEDS TO BE MONITORED AT CEMENT PLANTS

For other uses

 Test Parameter↓ 	Clinker		
Free Lime	3% (max.)		
C ₃ S	35% (min.)		
$C_3S + C_2S$	70%		
C ₃ A	3 to 12%		
Total SO ₃ % (max.)	2.70		
Total Alkalies as Na ₂ O % (max.)	0.60		
Chloride % (max.)			
For prestressed concrete	0.05		
For other uses	0.10		

Test Parameter↓	Cement (PPC)		Test Parameter↓	Effect on Concrete	
Fineness, m2/kg (min.)	300		КСІ		
Setting Time, min.				Effect on	
Initial (min.)	30		NaCl	setting time and strength	
Final (max.)	600				
Comp. Strength	(16, 22, 33)		CaCl2		
N/mm2 (3, 7, 28 days)			K2O	Alkali-	
Total SO $_3$ % (max.)	3.50		Na2O	Aggregate Reactivity	
Total Alkalies as	0.60			for hazardous	
$Na_2O\%$ (max.)	0.90	Leachability		plastic	
Chloride %	(max.)			-	
For prestressed concrete	0.05				

0.10

OPERATIONAL CONSIDERATION FOR PLASTICS CO-PROCESSING IN CEMENT PLANTS

- Feeding of plastic waste is not to be carried out during kiln start up and kiln shut down conditions
 - Feeding of plastic waste needs to be initiated only after the kiln attains its stable operating conditions.
- The Feeding of plastic waste should not be continued in case the continuous emission monitoring system (CEMS) is not connected with CPCB and SPCB servers.
- The cement plants shall ensure that the emission parameters are monitored as per the prescribed monitoring protocol provided by regulatory bodies like CPCB, SPCB/PCC and MoEFCC.

(Source: Guidelines for Co-processing of Plastic Waste in Cement Kilns 2017 (As per Rule '5(b)' of Plastic Waste Management Rules, 2016)

EMISSION LIMITS FOR INDIAN CEMENT INDUSTRY

Parameters	Limit		Remarks	
PM	30	mg/Nm ³	All the plants	
	600	mg/Nm ³	For New Cement kilns commissioned on or after 25.08.14	
NOx	800	mg/Nm³	Rotary kiln with In Line Calciner Technology	
	1000	mg/Nm³	Rotary kiln using mixed stream of ILC, SLC and suspension pre-heater technology	
	100	mg/Nm ³	When pyritic sulphur in the limestone is less than 0.25%	
SO ₂	700	mg/Nm ³	When pyritic sulphur in the limestone is in between 0.25% to 0.5%	
	1000	mg/Nm ³	When pyritic sulphur in the limestone is more than 0.5%.	

EMISSION LIMITS FOR INDIAN CEMENT INDUSTRY

Parameters	Limit		Remarks
НСІ	10	mg/Nm ³	
HF	1	mg/Nm ³	
ТОС	10	mg/Nm ³	In addition to
Hg and its comp	0.05	mg/Nm ³	parameters
Cd +TI and their compounds	0.05	mg/Nm³	while co- processing of waste like
Sb + As + Pb + Co + Cr + Cu + Mn + Ni + V	0.5	mg/Nm ³	plastics
Dioxins and Furans	0.1	ngTEQ/Nm3	

INFRASTRUCTURAL REQUIREMENT FOR PLASTICS CO-PROCESSING IN CEMENT PLANTS

- Coal feeding circuit and raw material feeding circuits of the cement plant must not be utilised to feed any type of wastes for co-processing
- Therefore, Separate feeding arrangement is required. In case it is already there, then the same can be utilised for plastics as well.
- Proper covered storage along with conveying mechanism to move plastic waste from storage area to kiln
- Equipment such as double flap valves, shut off gates etc. are implemented to ensure uniform feed and safety in operation.
- A lab facility to carry out the calorific value, ash content, moisture content and chloride content.

Source: Guidelines for Co-processing of Plastic Waste in Cement Kilns 2017 (As per Rule '5(b)' of Plastic Waste Management Rules, 2016)

SOME LARGE PLANTS HAVE SHREDDING & FEEDING SYSTEM OF PLASTIC WASTE

Waste Polythene & Plastic Shredder

Feeding Of Plastic Waste Into The Shredder

Unloading The Polythene And Plastic Waste

Shredded Waste Polythene & Plastic

AF FEEDING SYSTEM AT A CEMENT PLANT

Step – 1 Unloading of RDF (Refuse Derived Fuel into hoppers)

Step – 3 Storage and Feeding Hoppers

Step – 2 Storage and Feeding Hoppers

Step – 4 Alternate Fuel Feeding System

CONSTRAINTS FACED

- Lack of effective Pre-processing facilities like shredding
- High chlorine content
- High moisture content
- Impurities present in plastic/littered plastic
- Firing through kiln main burner is one of the major constraint
- Unavailability of plastic waste on consistent basis
- Large Investment to operate at a TSR level of about 15%.

STRATEGY TO ENCOURAGE CO-PROCESSING IN CEMENT INDUSTRY

- Perception of Co-incineration as a dump-yard of any kind & size of waste Needs to be changed
- Plastic waste specifications to be formulated for co-processing
- Most of the cement plants don't have any shredding facilities. This will require local bodies to establish Material Segregation & Recovery Facilities (MSRF) to pre-process the littered plastics
- Some Large cement plants have shredding facilities and they can pre-process the incoming segregated waste.
- Implementation of Extended Producer Responsibility
- Strong database of types of plastics and their composition and region wise availability

FACILITATION

- Segregated plastics handling & storage facility nearby cement plants cluster
- Viable Economic model to be developed for transportation of preprocessed plastic waste
- E-CERTs based system for % TSR
- Linkage of cement industry, plastic manufacturers, municipalities, research bodies

Cement plants also needs to upgrade their co-processing systems for firing in kiln and calciner if good quality plastic waste is ensured in the vicinity.

www.ncbindia.com

nccbm@ncbindia.com, info@ncbindia.com